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ABSTRACT

This study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to
search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to
simulate observed sensible and latent heat fluxes from seven measurement sites representative of six biomes
including temperate coniferous forests, tropical forests, temperate and tropical grasslands, temperate crops, and
semiarid grasslands. Calibration results with the BSI and MC show that estimated optimal values are very similar
for the important parameters that are specific to the CHASM model. The model simulations based on estimated
optimal parameter sets perform much better than the default parameter sets. Cross-validations for two tropical
forest sites show that the calibrated parameters for one site can be transferred to another site within the same
biome. The uncertainties of optimal parameters are obtained through BSI, which estimates a multidimensional
posterior probability density function (PPD). Marginal PPD analyses show that nonoptimal choices of stomatal
resistance would contribute most to model simulation errors at all sites, followed by ground and vegetation
roughness length at six of seven sites. The impact of initial root-zone soil moisture and nonmosaic approach
on estimation of optimal parameters and their uncertainties is discussed.

1. Introduction

Land surface modeling is considered to be one of the
major causes of uncertainties in current climate change
predictions (Houghton et al. 1996; Crossley et al. 2000).
Moreover, results from the Project for Intercomparison
of Land Surface Parameterization Schemes (PILPS)
have revealed poor agreement among land surface
schemes in representing key surface processes affecting
water content and energy partitioning (Henderson-Sell-
ers et al. 1996). Even when the same forcing is pre-
scribed, there are still many factors that may cause this
disparity. They include different model development
philosophies (Henderson-Sellers 1996; Sellers et al.
1997), different model structures (Henderson-Sellers
1996), and different effective definitions of similar pa-
rameters (Desborough 1999). There have been continu-
ing efforts to improve our understanding of model per-
formance and how land surface schemes affect global
climate simulations (Crossley et al. 2000; Desborough
et al. 2001) and regional climate simulations (Zhang et
al. 2001). As the structure and complexity of land sur-
face models increase, the number of model parameters
increase. Considerable research has been devoted to the
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development of automated methods for identifying op-
timal model parameter sets that reduce model uncer-
tainties. Gupta et al. (1999) and Bastidas et al. (1999),
for example, used a multicriteria (MC) calibration meth-
od to estimate acceptable optimal parameter sets for
complex land surface schemes [e.g., the Biosphere–At-
mosphere Transfer Scheme (BATS)]. The results
showed that the BATS performed better when its pa-
rameter values were optimized using the MC method.
Xia et al. (2002) used this method to investigate the
relationship between model complexity and perfor-
mance for the Cabauw dataset. Their results showed that
complex models performed better than simple models
when optimal model parameter values were used.

Estimates of parameters from a calibrated (optimized)
complex land surface model are generally uncertain be-
cause 1) the observed data such as forcing data and
surface energy flux data are uncertain, 2) the model
never perfectly represents the land surface system and
simplifications are needed in the parameterizations, and
3) model variables are ensemble averages while field
measurements that are used for comparisons are ‘‘in-
stantaneous’’ samples. Here we define uncertainty to be
the choices of model parameter values that allow model
simulations to exist within known observational or mod-
el errors. Therefore, the exercise of enumerating and
evaluating the relative likelihood of different model pa-
rameter values is related to but is distinct in purpose
from the ‘‘global optimization’’ techniques commonly
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used for calibration within the land surface modeling
community such as the shuffled complex evolution
method (SCE-UA; Duan et al. 1992, 1994), genetic al-
gorithms (Wang 1991), or Bayesian recursive parameter
estimation (Thiemann et al. 2001).

The application of statistical measures of uncertainty
arising from multiple, nonlinearly related parameters
typically uses a Monte Carlo Markov chain method
based on the Metropolis–Hastings algorithm [Metrop-
olis et al. 1953; Hastings 1970; for a modern treatment
of this approach see Gelman et al. (2003)] and has been
applied to surface hydrology by a number of authors
(Kuczera and Parent 1998; Campbell et al. 1999; Bates
and Campbell 2001) as well as models of the land sur-
face (Franks and Beven 1997; Jackson et al. 2003). Oth-
er important examples of estimating land surface model
parameter uncertainties include Alapaty et al. (1997)
and Niyogi et al. (1998, 1999, 2002). The study by
Franks and Beven (1997) used a Monte Carlo sampling
of parameters within the Soil–Vegetation–Atmosphere
Transfer scheme (SVAT) and generalized likelihood un-
certainty estimation (GLUE) methodology to analyze
uncertainties in land surface–atmosphere flux simula-
tions for the First International Satellite Land Surface
Climatology Project Field Experiment (FIFE) site and
an Amazonian pasture site. The top 10% of 10 000
different parameter combinations were chosen to rep-
resent the uncertainty stemming from model parameters.
The results showed that the range of model simulations
of surface energy fluxes had typical widths of approx-
imately one-third of the maximum observed fluxes for
both sites. Franks and Beven (1997) reported that the
short-term field campaigns represented by the datasets
(6–21 August and 5–16 October 1987 at FIFE site; 16
October–2 November 1990 and 29 June–10 September
1991 at Amazon site) may be inadequate to specify
parameter values characteristic of a site or area with
precision.

Jackson et al. (2003) used a 1-yr dataset at the Ca-
bauw site in the Netherlands and Bayesian stochastic
inversion (BSI) to investigate the uncertainty of the Cha-
meleon Surface Model (CHASM; Desborough 1999) for
simulations of surface energy fluxes. Rather than spec-
ifying a given percentile of the top few percent of the
parameter sets tested as was done within Franks and
Beven (1997), a logic was introduced to select model
parameter sets that were within uncertainties of the ob-
served surface energy fluxes quantified by Beljaars and
Bosveld (1997).

Both Xia et al. (2002) and Jackson et al. (2003) used
only one site (Cabauw) as a case study. Therefore, mul-
tidatasets with different vegetation, soil, climate, and
longer measurement periods are able to provide a more
comprehensive comparison of the BSI and MC methods
and quantification of parameter uncertainties within a
complex land surface model. Here we use multidatasets
from seven sites to compare the ability of the BSI and
MC methods to search for the optimal parameter sets

of the CHASM and use the BSI to analyze sources of
parameter uncertainty for the CHASM. In addition, we
discuss the uncertainties in specifying parameter values
for the CHASM for the same biomes for different sites
or for different periods for the same sites.

The following section gives a brief description of sites
considered, the CHASM, and optimization methods.
Section 3 describes the experiment design and analysis
of parameter sensitivities. A comparison of the two op-
timization methods is shown in section 4, followed by
an uncertainty analysis of the optimal parameters in sec-
tion 5. The impacts of initial soil moisture and a non-
mosaic approach on optimal parameters and their un-
certainty estimation are given in section 6. The discus-
sion and conclusions are presented in sections 7 and 8,
respectively.

2. Sites, model, and optimization methods

Site characteristics such as site location, climate, veg-
etation type, soil type and measurement data character-
istics such as data record length and observation inter-
vals are described in section 2a, followed by a brief
description of one-tile and two-tile CHASMs and basic
parameterizations in section 2b. A brief description of
Bayesian stochastic inversion and the multicriteria
method is given in sections 2c and 2d, respectively.

a. Sites

The model forcing data and surface flux data used in
this study were collected at seven sites. These sites were
chosen based upon the data availability and for the dif-
ferent climate and vegetation characteristics. They rep-
resent midlatitude grasslands, midlatitude crops, tropical
grasslands, tropical forests, midlatitude forests, and a
semiarid shrubland. As suggested by Sen et al. (2001),
these typical vegetations cover over 50% of the world’s
land area. At all sites, forcing data include downward
longwave radiation (DLR), air temperature (T), relative
humidity (RH), wind speed (V), precipitation (Precip)
and incoming solar radiation (ISR) or net radiation
(Rnet). The energy flux data include sensible and latent
heat fluxes. Table 1 summarizes location, vegetation,
climate, observed periods, and input data at seven sites.

1) ABRACOF TROPICAL FOREST SITE

The Abracof tropical forest data were taken at 10859S,
618559W, 80 km northeast of Ji-Parana in Rondonia,
Brazil. The average tree height is 33 m and the soil is
a red-yellow sandy loam (oxisol). The wet season is
from December to April but the region experiences a
dry season for several weeks during June and August
when rainfall is less than 10 mm month21. Meteoro-
logical measurements were made on a 52-m-high tower.
The forcing data were collected between June 1992 and
December 1993 at 1-h intervals. Surface energy fluxes
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were also collected within two intensive observation
periods between August and October in 1992 and be-
tween April and July in 1993 at 1-h intervals. Details
can be found in Roberts et al. (1996) and online at
http://www3.cptec.inpe.br/abracos.

2) ABRACOP TROPICAL GRASSLAND SITE

The Abracop tropical grassland site is located at
108459S, 628229W on a cattle ranch at an elevation of
220 m above sea level, about 50 km east-northeast of
Ji-Parana. This site was deforested in 1977 and is at the
center of a cleared area of about 50-km radius. The
vegetation is grass and the soil is a red-yellow sandy
loam latosol (oxisol). The area of bare soil is about 12%.
The pasture had been burnt in the month prior to equipment
installation, but it was not burnt again during the obser-
vation period. The forcing data were measured on a 6-m-
high tower and quantities specifying the surface energy
fluxes are the same as were collected at Abracof tropical
forest site [see McWilliam et al. (1996) and http://www3.
cptec.inpe.br/abracos].

3) AMAZON TROPICAL FOREST SITE

The Amazon tropical forest site is located at 28579S,
598579W in the Reserva Florestal Ducke, 25 km from
Manaus, Brazil. The surrounding forest is undisturbed,
and ground-level vegetation is below 1.2 m. Mean tree
height is 35 m but some trees can be as high as 40 m,
and the forest covers about 65%–70% of this area. The
site was selected for its being representative of the nat-
ural vegetation and regional topography. The climato-
logical average rainfall exhibits a marked seasonal de-
pendence, with a mean monthly maximum about 350
mm in March, dropping to a mean monthly minimum
about 100 mm in August. The forcing data were col-
lected between January 1997 and December 1998 at 30-
min intervals. The sensible and latent heat fluxes were
collected during the same period at the same time in-
tervals. A more extensive description of the site can be
found in Shuttleworth (1984), Roberts et al. (1990), and
online at http://www3.cptec.inpe.br/abracos.

4) ARMCART TEMPERATE CROP SITE

The U.S. Department of Energy’s Atmospheric Ra-
diation Measurement Program Clouds and Radiation
Test Bed (ARMCART) crop site is located at 368369N,
978299W, near Lamont, Oklahoma. This site is surround-
ed by winter and summer crops. During the warm pe-
riods it suffers from lack of moisture. Meteorological
data were measured on a 2.5-m-tall tower. The forcing
data cover the 5-month period from 1 April to 25 August
1995, with a sampling interval of 30 min. At the same
time, sensible and latent heat flux data were also col-
lected [see Gupta et al. (1999) and http://www.arm.gov/
docs/research/science/R00008.html].
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5) CABAUW TEMPERATE GRASSLAND SITE

The data collected at Cabauw (518589N, 48569E, the
Netherlands) are described in detail by Beljaars and Bos-
veld (1997). The data were measured on a 20-m-high
tower surrounded by short grass divided by narrow ditch-
es without significant obstacles or interruptions within a
distance of 200 m from the tower. Beyond 200 m, some
scattered houses and trees can be found. The climate in
the area is characterized as moderate maritime with pre-
vailing westerly wind. Annual precipitation is 776 mm,
and annual mean air temperature is 282 K for the year
1987. The vegetation cover is close to 100% year-round.
The soil contains 35%–55% clay. Forcing data and en-
ergy fluxes at 30-min intervals are collected for the entire
year of 1987. The Cabauw data have been widely used
to intercompare and investigate land surface models
(Chen et al. 1997; Desborough 1999; Xia et al. 2002).
The details of the data can also be found online at
http://www.knmi.nl/onderzk/atmoond/cabauw/cabauw.
html.

6) LOOBOS TEMPERATE CONIFEROUS FOREST SITE

The Loobos temperate coniferous forest site is located
at 528109N, 58449E near Kootwijk in the Netherlands.
The main tree species is Scots pine (Pinus silvestris).
The forest extends to more than 1.5 km in all directions
and is underlain by a grass understory growing in sand.
The forcing data were collected at 30-min intervals on
a 22-m-tall tower for both 1997 and 1998. The sensible
and latent heat fluxes were collected with a 30-min in-
terval for both years. More details can be found online
at http://www.bgc-jena.mpg.de/public/carboeur/sites/
indexps.html.

7) TUCSON SEMIARID SITE

The Tucson site is located at 328139N, 111859W in
the semiarid, alluvial Sonoran Desert near Tucson, Ar-
izona, on a gently sloping terrain (Unland et al. 1996).
Annual precipitation is 275 mm at this site. The veg-
etation is very diverse and interspersed with patches of
exposed rocky soil. The site has a fractional vegetation
cover of 40%. Mean vegetation height is 1.2 m, ranging
from low grass of a few centimeters to bushes of up to
7 m. The forcing data are similar to that at the ARM-
CART site but at 20-min intervals, collected on a 10-
m-tall tower from 1 June 1993 to 26 March 1994. Mea-
surements of sensible and latent heat fluxes were made
at the same frequency (see Unland et al. 1996).

b. Model

The CHASM (Desborough 1999; Pitman et al. 2003)
land surface model has been used for offline intercom-
parison of the PILPS phase 2d (Schlosser et al. 2000;
Slater et al. 2001) and phase 2e (Bowling et al. 2003)

and simulations of the coupled global general circulation
model (GCM; Desborough et al. 2001) and the regional
climate model (Zhang et al. 2001). It was designed to
explore the general aspects of land surface energy bal-
ance representation within a common modeling frame-
work (Desborough 1999) that can be run in a variety
of surface energy balance modes ranging from a com-
plex mosaic-type structure (see Koster and Suarez 1992)
all the way to the most simple zero energy balance
formulation (Manabe 1969). Here we use the two-tile
mosaic-type and one-tile nonmosaic-type representa-
tion. Within the mosaic-type representation the land–
atmosphere interface is divided into two tiles. The first
tile is a combination of bare ground and exposed snow
with the second tile consisting of dense vegetation. The
tiles may be of different sizes and the energy fluxes of
each tile are area-weighted. Because separate surface
balance is calculated for each tile, temperature variations
may exist across the land–atmosphere interface. A prog-
nostic bulk temperature for the storage of energy and a
diagnostic skin temperature for the computation of sur-
face energy fluxes are calculated for each tile. Snow
fraction cover for both ground and foliage surfaces are
calculated as functions of the snowpack depth, density,
and the vegetation roughness length. The vegetation
fraction is further divided into wet and dry fractions if
canopy interception is considered. This model has ex-
plicit parameterizations for canopy resistance, canopy
interception, vegetation transpiration, and bare-ground
evaporation but has no explicit canopy-air space (see
Pitman et al. 2003). Within the nonmosaic-type repre-
sentation the land–atmosphere interface has only one
tile.

CHASM uses the formulation of Manabe (1969) for
the hydrologic component of the land surface in which
the root zone is treated as a bucket with finite water-
holding capacity. Any water accumulation beyond this
capacity is assumed to be runoff. Except for moisture
in the root zone, water can be stored as snow on the
ground or on the canopy. Soil temperature is calculated
within four soil layers using a finite-difference method
and zero-flux boundary condition. Each tile has four
evaporation sources for canopy evaporation, transpira-
tion, bare-ground evaporation, and snow sublimation.
Basic parameterizations related to latent heat fluxes are
shown in the appendix.

c. Bayesian stochastic inversion

The BSI approach to quantifying uncertainties is
based on the mathematics of conditional probabilities.
That is, estimated parameter probabilities indicate the
degree to which one set of model configurations perform
better relative to other choices that have been consid-
ered. BSI controls which model configurations are test-
ed. This is commonly done in a stochastic manner either
through Monte Carlo (random) sampling or through oth-
er so-called importance sampling techniques such as
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FIG. 1. A simple schematic diagram to use the BSI and CHASM
land surface model.

TABLE 2. The calculated s values at seven measurement sites.

Site Abracof Abracop Amazon
ARM-
CART Cabauw Loobos Tucson

S 5.7 7.3 6.5 6.8 16.1 15.4 23.1

very fast simulated annealing (VFSA) that was em-
ployed here. Every model configuration tested contrib-
utes to estimating a multidimensional probability dis-
tribution (called the posterior probability density func-
tion or PPD) by way of a likelihood function that pro-
vides a way to weigh different skill scores (defined in
section 3a).

The PPD can be expressed mathematically as

exp[2sE(m)]p(m)
s(m | d ) 5 , (1)obs

exp[2sE(m)]p(m) dmE
where the vertical bar | is used in conditional proba-
bilities to indicate that the probability for the left-side
quantity is dependent on information provided by the
limited sampling of quantities on the right side of the
vertical bar. In this case Eq. (1) expressed the probability
for specific combination of model parameter values m
given the observations that are included in dobs. Here,
E(m) is the error function or skill score defined in sec-
tion 3a, exp[2sE(m)] is the likelihood function with
shaping factor s described later, p(m) is the ‘‘prior’’
probability density function for m where one may spec-
ify in advance any constraints on choices of m outside
the information provided by dobs. In our case we specify
p(m) as having a uniform distribution (or equal prob-
ability) for any realistic parameter choice. This prior
provides a noninformative constraint for parameter val-
ues within the parameter search window. The denomi-
nator is a simple integration of the numerator so that

the sum of all likelihood weights for all model com-
binations for a given parameter is unity.

Because the PPD is multidimensional, it is difficult
to visualize. Therefore, a one-dimensional projection of
the PPD (i.e., the marginal PPD) is usually displayed.
Once the PPD is known, the parameter means or co-
variances can be obtained through multidimensional in-
tegrals of the general form

I 5 f (m)s(m | d ) dm, (2)E obs

where f (m) 5 (m 2 ^m&)(m 2 ^m&)T and ^m& is the
vector of parameter means.

We use the VFSA algorithm to stochastically select
parameter sets. VFSA is a form of importance sampling
that helps to focus computational effort toward regions
of parameter space that are the most significant portions
of the PPD. As reported in Sen and Stoffa (1996), the
VFSA algorithm convergence to the optimal parameter
settings can be repeated a number of times within the
BSI framework to approximate the multidimensional
PPD, even when the relationship between parameters is
nonlinear. Evaluations from all VFSA runs are used to
estimate the PPD. A detailed description of the VFSA
algorithm and its use can be found in Sen and Stoffa
(1995, 1996) and Jackson et al. (2004), and a simple
schematic diagram to use BSI and the CHASM is shown
in Fig. 1.

Shaping factor s controls the relative weighting be-
tween different model configurations. The shaping fac-
tor is therefore related to uncertainty. Jackson et al.
(2003) defined s in such a way as to force the PPD to
reflect published estimates of the uncertainty in the ob-
servations (s 5 2/DEu, where DEu is the range in error
function values associated with observational or model
uncertainty). Because no such estimates exist for six of
the seven PILPS datasets, here we use the root-mean-
square errors (rmse) between observed data and simu-
lations at the time scale of the observational data (;20–
60 min) to define our best estimate of observational
uncertainty (Table 6). Because this number also includes
any systematic differences between model simulations
and the observations, these estimates also include some
notion of model uncertainty. If observational uncertain-
ty is randomly distributed about the optimal selection,
one may infer that the remaining systematic errors are
most likely attributed to model biases. The calculated s
values are shown in Table 2 for seven measurement
sites. The s values vary from 5.7 to 23.1, depending on
the site. Although s is related to the error between ob-
served data and simulations, its choice is also affected
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TABLE 3. Description and ranges of 12 CHASM parameters.

Parameter Description Min value Max value

ALBG
ALBN
ALBV
LEFM
VEGM
VEGS
RCMIN
WRMAX

Bare-ground albedo
Snow albedo
Vegetation albedo
Max LAI
Max fractional vegetation cover
Fractional vegetation cover seasonality
Min canopy resistance (s m21)
Available water-holding capacity (mm)

0.05
0.50
0.05
4.00
0.70
0.23
1.00

10.0

0.40
1.00
0.40
6.00
1.00
0.26

300
600

Z0G
Z0N
Z0V

TS

Ground roughness length (m)
Snow roughness length (1024 m)
Vegetation roughness length (m) for grass
Same for forest
Initial soil temperature

1.0 3 1024

1.0
0.00
0.80

275

0.01
6.0
0.40
2.50

310

TABLE 4. Default values of 12 CHASM parameters.

Parameter Abracof Abracop Amazon ARMCART Cabauw Loobos Tucson

ALBG
ALBN
ALBV
LEFM
VEGM
VEGS
RCMIN
WRMAX
Z0G
Z0N
Z0V
TS

0.20
0.75
0.14
6.00
0.90
0.25

50.0
234

0.01
0.0004
2.00

300

0.20
0.75
0.14
4.00
0.90
0.25

50.0
234

0.01
0.004
0.20

300

0.20
0.75
0.14
6.00
0.90
0.25

50.0
234

0.01
0.0004
2.00

300

0.20
0.75
0.23
4.00
0.90
0.25

40.0
141

0.01
0.0004
0.15

279

0.20
0.75
0.23
4.00
0.95
0.25

40.0
141

0.01
0.0004
0.15

279

0.20
0.75
0.18
4.00
0.90
0.25

40.0
200

0.01
0.0004
2.00

279

0.30
0.75
0.30
4.00
0.70
0.25

40.0
122

0.01
0.0004
0.02

284

by parameter sampling and therefore does not have a
straightforward interpretation.

d. Multicriteria approach

The multicriteria (MC) parameter estimation meth-
odology was developed by Gupta et al. (1998) from a
single-criteria method of Duan et al. (1994) that is wide-
ly used in hydrological modeling. Gupta et al. (1998,
1999) describe a framework for the application of the
multicriteria approach to the calibration of a physical-
based model and present a case study in which this
method is used to calibrate the BATS land surface mod-
el.

The basic idea of the MC method is to search for
feasible parameter sets, in which parameter values si-
multaneously minimize multiple criteria according to
one’s objective function definition (Gupta et al. 1998).
Since MC is used for a multiobjective problem (i.e., a
vector of errors derived from many sources) it is un-
likely to find a unique solution without stating how
individual criteria should be weighted. Instead, there
usually exist a range of solutions where moving from
one solution to another results in improvement of one
criterion while causing deterioration in another. This set
is called the Pareto solution set which represents a range
of the best solutions that can be found in the parameter
space for each of the separate criteria. An efficient, pop-

ulation-based and optimized searching method, called
the multiobjective complex evolution method, was de-
veloped by Yapo et al. (1998). It provides an approxi-
mate representation of the Pareto set in a single opti-
mization run.

Prior to optimization, one needs to select feasible
parameter ranges, objective function definition, and
‘‘target’’ observational fields. The MC algorithm will
terminate when it has converged to the Pareto set.

3. Experimental design and analysis of parameter
sensitivities

a. Experimental design

CHASM includes 12 soil and vegetation parameters
that are available for calibration. Our initial set of ex-
periments neglected to include the parameter for initial
soil moisture. We have subsequently completed these
experiments and remarked on its importance as well the
influence of other choices pertaining to model structures
that would be important to parameter optimization and
uncertainty estimation in the discussion in section 7.
The ranges and descriptions, and default values of these
parameters are shown in Tables 3 and 4.

Observations of sensible and latent heat fluxes are
used as the target observations for all seven sites. A
ratio of variance of the errors (RVE) to the variance of
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TABLE 5. Relative importance of CHASM parameters for seven sites (check marks indicate the important parameters).

Sites and
parameters Abracof Abracop Amazon ARMCART Cabauw Loobos Tucson

ALBG
ALBN
ALBV
LEFM
VEGM
VEGS
RCMIN
WRMAX
Z0G
Z0N
Z0V
TS

u

u

u
u
u

u
u

u

u

u
u
u

u
u

u
u
u

u
u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
u

u

observations is used to define the mismatch between
observations and model simulations for the MC and the
BSI calibration. RVE is defined as

N

2(obs 2 sim )O n n
n51RVE 5 , (3)N

2(obs 2 obs)O n
n51

where N is number of observational data, obsn is the
observed data, simn is the simulation, and is meanobs
value of the observed data. MC and BSI are used for
the seven sites to identify the best parameter sets that
have minimum RVE. BSI is also used to estimate pa-
rameter uncertainty ranges.

b. Analysis of parameters

In order to understand what parameters are important
for the CHASM at seven sites, we evaluated the mar-
ginal PPD. The most important parameters tended to
have very sharp probability distributions. Those param-
eters that were marginally important may be more af-
fected by statistical sampling issues. In these cases, the
marginal PPD may be misleading. We therefore also
considered linear sensitivity profiles (one factor at a
time; Jackson et al. 2003), which do not have any sam-
pling issues, to get a better perspective on the relative
importance of individual parameters. The purpose of
this analysis is to understand what parameters are sen-
sitive or insensitive for the CHASM at seven sites. The
experiment results are given in Table 5. The parameters
that are identified as being important depend on the
dominant physical processes that occur at each site.
However, some parameters such as minimum stomatal
resistance (RCMIN), vegetation albedo (ALBV), veg-
etation roughness length (Z0V), ground roughness
length (Z0G), and vegetation cover fraction (VEGM)
are important for almost all sites. RCMIN, Z0V, Z0G,
and VEGM are closely related to the calculation of latent
heat fluxes as shown in the appendix, while ALBV is
closely related to the calculation of vegetation skin tem-

perature, further influencing sensible and latent heat
fluxes. In addition, ground albedo (ALBG), maximum
water holding capacity (WRMAX), and initial ground
temperature (TS) also have important influence for some
sites. The other parameters, such as snow albedo
(ALBN), maximum leaf area index (LEFM), vegetation
fraction cover seasonality (VEGS), and snow roughness
index (Z0N), show negligible effect on simulation errors
for the CHASM for most of the sites. The parameters
such as snow albedo and snow roughness length are not
important because most of the sites have no snow (Abra-
cof, Amazon, Abeacof, Tucson), have no snow during
calibration period (ARMCART), or are not important
for sensible and latent heat simulations (Cabauw, Loo-
bos). Therefore, they are not sensitive parameters.

There are many methods to infer parameter sensitivity
that have been applied in meteorological contexts, in-
cluding the traditional perturbation (one parameter at a
time) technique (e.g., Wilson et al. 1987; Bonan et al.
1993; Pitman 1994; Alapaty et al. 1997), variational
(adjoint) methods (e.g., Skaggs and Barry 1996; Mar-
gulis and Entekhabi 2001), factorial methods (Hender-
son-Sellers 1993; Niyogi et al. 1999), Fourier amplitude
sensitivity tests (e.g., Collins and Avissar 1994), mu-
ticriteria methods (e.g., Bastidas et al. 1996, 1999), re-
duced form model (Beringer et al. 2002), and response
surface methods (Niyogi et al. 1998, 2002). Each of
these techniques has benefits and drawbacks. For a thor-
ough discussion of the pros and cons of the various
methods, see Skaggs and Barry (1996) or Gao et al.
(1996). Sensitive parameters are more dependent on spe-
cific land surface models, sites, and analysis methods
used. However, that RCMIN, ALBV, and Z0V are im-
portant factors in this study is consistent with the pre-
viously cited studies.

4. Estimation of optimal parameter values for
CHASM

a. Comparison of two methods

Table 6 shows optimal parameter sets derived by the
BSI and MC methods at seven sites. The MC method
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produces a number of parameter sets (called the Pareto
set; Gupta et al. 1999) from which a preferred parameter
set with minimum error values is chosen by a compro-
mise method used by Leplastrier et al. (2002). In this
compromise method we select from the Pareto set the
parameter values that correspond to an equal weighting
among the separate criteria (one for sensible heat flux
and one for latent heat flux). A comparison of the op-
timal parameter sets obtained by BSI and MC methods
shows that estimated optimal values are similar for the
important parameters shown in Table 5. Because the
important parameters largely determine simulations of
sensible and latent heat fluxes, similar values for these
parameters lead to similar simulations of sensible and
latent heat fluxes (see Figs. 2, 3, and 4) at Abracof and
Abracop (7–16 July 1993), Amazon (9–18 August
1998), ARMCART (4–13 July 1995), Cabauw (4–13
July 1987), Loobos (1–10 July 1998), and Tucson sites
(13–22 August 1993). Here the CHASM was run for
the entire length of the observational periods as shown
in Table 1 and 10-day segments were selected for il-
lustration purposes. Comparison of simulated energy
fluxes with optimal parameter sets and default parameter
sets taken from Desborough (1999) shows that at the
tropical forest (Abracof and Amazon), tropical grassland
(Abracop), and midlatitude grassland (Cabauw) and
crop (ARMCART) sites, default parameter sets over-
estimate sensible heat fluxes and underestimate latent
heat fluxes (see Fig. 4). These differences are due to
the use of higher RCMIN and Z0V in the default pa-
rameter sets when compared with the optimal parameter
sets. The large values for RCMIN and Z0V in the default
parameter settings hinder the transpiration of moisture
from vegetation and therefore favor sensible heat flux
over latent heat flux to maintain the surface energy bal-
ance. At the midlatitude forest site (Loobos) and semi-
arid site (Tucson), the calibrated parameter sets and de-
fault parameter sets are similar, resulting in similar mod-
el simulations. Overall, the central conclusion is that
both BSI and MC are effective methods for finding the
optimal parameter sets that better reproduce the obser-
vations.

Root-mean-square errors and bias between simulated
and observed data for whole simulation periods are
shown in Table 7. Rmse varies between 12.8 and 49.8
W m22 for sensible heat flux and between 22.9 and 70.0
W m22 for latent heat flux, depending on the site and
calibration method. When compared with default sim-
ulations, calibrated results have smaller rmse for all
sites. At tropical forest and pasture sites (i.e., Abeacof,
Abracop, Amazon) and midlatitude crops site (i.e.,
ARMCART), optimal parameter sets greatly reduce
simulation biases for sensible and latent heat fluxes.

It should be noted that two problems exist in this
study. The first one is that two methods produce sig-
nificantly different values of WRMAX at ARMCART
and Cabauw, significantly different values of Z0V at
Loobos, significantly different values of ALBG at
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FIG. 2. Observed and simulated sensible heat (SH) fluxes for 10-
day period at different time intervals (from 20 min to 1 h) when
calibrations were performed at seven sites (dot 5 observation, solid
5 BSI, dashed 5 MC, gray 5 default, and horizontal axis is rep-
resented with date).

ARMCART, and significantly different values of TS at
Amazon and ARMCART (Table 6). However, these pa-
rameters do not strongly affect offline sensible and latent
heat flux simulations for the CHASM. Caution may be
warranted before using calibrated parameter values for
the parameters that are not strongly constrained by ob-
servations of surface energy fluxes. Feedbacks in cou-
pled models may produce significant errors. In this case,
we suggest using default values to replace the calibrated
values for those parameters which are not strongly con-
strained. However, we still suggest using the calibrated
values for the parameters that are strongly constrained
by observations. The second problem is that some op-
timal parameter values generated in this study are not
reasonable. For example, the value of optimal vegetation
fraction (0.8) for Tucson is much larger than the default
value and what one would assume for a semiarid region
and that 0.7 for Abracof is much smaller than the default
value and what one would assume to be the value for
a tropical forest. The reason may be associated with the
unreasonable model structure and with model structure–
related interaction among parameters. Use of small pa-
rameter range (using local range instead of global range)
in prior can avoid these unreasonable parameter values.

b. Spatial transferability of optimal parameters

Spatial transferability of the calibrated parameters for
the same vegetation cover is an important and practical
issue. Sen et al. (2001) have used calibrated parameters
within the National Center for Atmospheric Research
(NCAR) Community Climate Model, version 3
(CCM3), assuming calibrated parameters for selected
locations could be used for the similar biomes at other
locations. Two tropical forest sites (Abracof, Amazon)
provide us with an opportunity to examine transfer-
ability of calibrated parameters for the same biomes. To
assess the spatial transferability of the calibrated param-
eters, we cross-validate the parameters calibrated at
Abracof using BSI and MC to calculate sensible and
latent heat fluxes at the Amazon site and vice versa.
Figure 5 shows the model simulations of sensible and
latent heat fluxes over a 10-day period. The results dem-
onstrate that sensible and latent heat fluxes are close to
observed values at two sites and are better than results
obtained using default parameter values. This evaluation
exercise suggests that the calibrated parameters can be
transferred from one site to another of the same biome
type. Notwithstanding the potential importance of at-
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FIG. 3. Same as in Fig. 2 but for latent heat (LH) fluxes.

TABLE 7. Rmse and bias between simulated and observed sensible (SH) and latent heat flux (LH) for seven measurement sites (W m22).

Method BSI MC

Variable

Site

SH

Rmse Bias

LH

Rmse Bias

SH

Rmse Bias

LH

Rmse Bias

Abracof
Abracop
Amazon
ARMCART
Cabauw
Loobos
Tucson

26.3
29.5
38.9
49.8
13.1
44.5
34.1

3.6
0.3
1.5
7.3
2.4

19.3
6.5

46.3
55.4
55.0
70.0
23.1
23.4
27.4

220.0
22.7

211.0
210.1

1.9
24.1
23.7

26.3
29.5
39.3
49.6
12.8
44.0
33.9

3.1
1.3

21.9
6.7
2.7

16.6
7.4

49.2
55.4
55.2
68.9
22.9
24.0
27.4

222.4
23.5

210.2
29.8

2.0
24.0
23.5

mospheric feedbacks, this exercise partly provides sup-
port for the use of offline calibrated parameter sets for
whole vegetation classes within general circulation
models (GCMs; Sen et al. 2001). If field observations
can be made for 18 vegetation classes (from bare soil
to forests), this application will improve GCM simu-
lations and reduce climate model simulation uncertain-
ties. However, the cross-validation exercise conducted
here uses two datasets obtained within a few tens of
kilometers of each other. Therefore, similar cross-vali-
dations may be required for testing whether or not re-

sults based on datasets within the same biome on dif-
ferent continents are interchangeable.

It is also still debatable whether the parameters cal-
ibrated for a given field site would be appropriate for
a land surface model as applied to whole grid cells of
a GCM. In addition, calibrated soil parameters may not
be applicable to GCM simulations because soil types
and characteristics are heterogeneous (Sen et al. 2001).
Perhaps in cases where it is determined that specific soil
parameters do not have a critical impact on GCM or
land surface simulations, a typical value can be used.
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FIG. 4. The X–Y scatterplots of Figs. 1 and 2 for observed and
SH and LH fluxes at seven sites (black stars 5 BSI, black tri-
angles 5 MC, and gray square 5 default).

TABLE 7. (Extended )

Default

SH

Rmse Bias

LH

Rmse Bias

75.4
48.5
45.7
73.9
30.4
51.3
45.3

35.2
18.2
9.0

26.4
3.5
8.6

211.2

82.7
72.9
62.2
93.2
32.9
25.6
33.7

237.6
221.9
216.2
224.5

0.0
24.2
21.3

However, this will probably not be true for sites such
as Abracof, Abracop, or Tucson where soil parameters
show significant effect on simulations (i.e., maximum
soil moisture-holding capacity).

5. Uncertainty analysis of optimal parameters

a. Marginal PPD

In Figures 6 and 7, we compare the marginal PPDs
and parameter ranges at the 90% and 95% confidence

levels for four parameters that are consistently important
at the seven sites considered. Here, we only concentrated
on discussing the results on the 95% confidence level.
The results for grasslands at the Abracop, ARMCART,
Cabauw, and Tucson sites are shown from the first row
to the fourth row in Fig. 6, respectively. The results for
forested areas Abracof, Amazon, and Loobos are shown
from the first row to the third row in Fig. 7, respectively.
Lines between two circles represent ranges of param-
eters at the 90% confidence level. Lines between two
dots represent ranges of parameters at the 95% confi-
dence level. The diamonds represent the best parameter
sets for different parameters. Comparison of the mar-
ginal PPDs for these four parameters shows significant
variations among midlatitude grasslands, tropical for-
ests, tropical grasslands, and semiarid areas, associating
different levels of uncertainty to specific parameter
choices for different vegetation covers and climates. For
grasslands and bushes (see Fig. 6) the marginal PPD of
vegetation roughness length (e.g., Z0V) has maximum
values (indicating maximum likelihood or possibility)
at small values (e.g., 0–1022 m). These small values are
consistent with the optimal parameter values (repre-
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FIG. 5. Cross-validation showing observed and SH and LH fluxes for a 10-day period with different time intervals (from 20 min to 1 h)
at two sites (dot 5 observation, solid 5 BSI, dashed 5 MC, gray 5 default, and horizontal axis indicates date). The optimal parameter sets
at the Abracof site were used at the Amazon site and vice versa.

sented by the diamond). As Z0V increase, the marginal
probability values for these parameters decrease rapidly,
indicating the model exceeds observational uncertain-
ties.

The marginal probabilities for RCMIN and Z0V show
strong constraints, particularly for the right boundary of
these parameters. Uncertainty for minimum stomatal re-
sistance is within 6–80 s m21 for Abracof, Abracop,
Amazon, ARMCART, and Cabauw sites and 20–180
s m21 for the Tucson site at the 95% confidence level.
Uncertainty ranges are within 0–0.1 m for Z0V for four
short-vegetation sites (see Fig. 6). However, as one can
see the distributions for Z0V are not Gaussian and there-
fore the 95% confidence interval may be an overestimate
of the ‘‘most likely’’ range. Vegetation albedo and veg-
etation cover fraction show larger uncertainty, but they
are also well constrained.

At the two grassland sites, similar marginal PPDs can
be found for RCMIN and Z0V while there is a shift in
the peak in the marginal PPDs for vegetation albedo.

At the seven sites, more spiked distributions can be
found for RCMN and Z0V, implying less uncertainty in
these parameters. Large uncertainties (wide PPDs) were
found for ground albedo at the seven sites (Fig. 8) and
for initial soil temperature at the seven sites. The ap-
proximate uniform distribution of PPDs for snow al-
bedo, maximum leaf average index, vegetation fraction
cover seasonality, and snow roughness index indicate
the largest uncertainty.

It should be noted that nonzero probabilities exist, in
principle outside the explored parameter region (as in-
dicated by the nonzero probability for vegetation frac-
tion cover at 0.7 and/or 1.0). However, we assume here
that parameter values outside the explored regions are
unphysical or unreasonable and therefore are assigned
to zero likelihoods.

To explore the sensitivity of these results to the
length of the observational data, we separate the ob-
served data at the Loobos and Amazon sites into two
parts, one for the year 1997 and the other for 1998.
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FIG. 6. Marginal PPD computed by multiple very fast simulated annealing for four parameters at three grasslands and one semiarid
site. The curves were smoothed using a five-point smoothing operator (dot 5 95% and circle 5 90% confidence level; diamond 5 the
best parameter set; results from stations Abracop, ARMCART, Cabauw, and Tucson are shown from the first row to the fourth row,
respectively).

The calculated marginal PPDs and confidence intervals
at the Loobos and Amazon sites are shown in Fig. 9.
The gray line represents the year 1997 and the black
line 1998. The best parameter sets are represented by
the diamonds. The lines between the two dots represent
the 95% confidence intervals. Although there are some
differences for vegetation albedo at the Amazon site
and vegetation fraction cover at the Loobos site, similar
marginal PPDs and confidence intervals are obtained
at the Loobos and Amazon sites for the selected four
important parameters shown in Table 2 for the years
1997 and 1998. For the other parameters there are mar-
ginal differences at these two sites. This means that
marginal PPDs are not significantly sensitive to the
length of observational data. This is true only for the
examined periods at these two sites. A proper and com-
plete assessment on sensitivity of data length to cal-
culation of marginal PPDs still needs a more thorough
testing as done by Yapo et al. (1996) where 40-yr ob-
servational data were used.

b. Correlation matrix for the CHASM parameters

The interdependence between different model param-
eters can be best understood by studying the posterior
correlation matrix. It is not necessary to report all the
correlation coefficients for the seven sites because many
of these coefficients are close to zero. Table 8 gives the
correlation coefficients between those parameters whose
correlation coefficients are relatively large. Vegetation
albedo is negatively correlated with ground albedo (cor-
relation coefficients from 20.2 to 20.4) and positively
correlated with vegetation cover fraction (correlation
coefficients from 0 up to 0.46). Because total albedo is
an area-weighted average of ground and vegetation al-
bedo, the anticorrelation and positive correlations for
the respective parameters helps the model maintain the
observed constraints on system energy. There also exist
statistically significant correlations between the vege-
tation albedo and minimum stomatal resistance (corre-
lation coefficients from 0.2 to 0.6). The reasons for this
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FIG. 7. Same as in Fig. 5 but for two tropical forests and one midlatitude pine forest. The curves were smoothed using a five-point
smoothing operator (dot 5 95% and circle 5 90% confidence level; diamond 5 the best parameter set; results from Abracof, Amazon, and
Loobos are shown from the first row to the third row, respectively).

correlation are not clear because one parameter (ALBV)
affects the total energy fluxes and the other (RCMN)
mainly controls the partitioning between sensible and
latent heat fluxes. No other significant correlations were
found between the other model parameters. Note that
the correlation is strictly a linear measure of the de-
pendence between two parameters. For parameters that
are nonlinearly related, the correlation value may not
indicate fully the parameters interdependence.

6. Impacts of initial soil moisture and nonmosaic
approach on optimal parameters and their
uncertainty analysis

Because the computational expense of parameter op-
timization and uncertainty estimation can be quite large,
sometimes it is necessary to limit the analysis to a few
key parameters. One may use different sensitivity anal-
yses to estimate the potential importance of a given
parameter, but potentially important parameters or
sources of uncertainty may be unintentionally neglected.
Within this discussion, we consider two potentially im-

portant factors that were initially neglected within the
analyses presented earlier, initial soil moisture and the
mosaic versus nonmosaic approach to constructing land
surface physics parameterizations. Initial soil moisture
has the potential to affect ground evaporation for many
months. Moreover, it influences latent heat flux and par-
titioning of surface energy fluxes. Niyogi et al. (2002)
discussed the importance of initial soil moisture on sen-
sible and latent heat fluxes with the Simplified Simple
Biosphere model and its relationship with vegetation
fraction and minimum stomatal resistance in a midlat-
itude regime. In order to examine impact of initial soil
moisture on the optimization processes and uncertainty
estimates of the CHASM, we conducted a second set
of experiments that includes initial soil moisture within
the BSI optimization and uncertainty estimation for all
sites except Abracof. (Because Abracof and Amazon
sites are in the Amazonian tropical forests, they have
similar climate, vegetation, and soil types. Therefore,
results at Amazon are representative for the Abracof
site.) The additional experiments confirm that initial soil
moisture is an important parameter for the sites consid-
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FIG. 8. Marginal PPD computed by multiple very fast
simulated annealing for ground albedo at seven mea-
surement sites. The curves were smoothed using a five-
point smoothing operator (diamond 5 the best parameter).

ered, consistent with results of Niyogi et al. (2002) for
midlatitude and arid tropical regimes. Initial soil mois-
ture was only found to have a statistically significant
correlation with maximum water-holding capacity.
Therefore, while uncertainty in initial soil moisture can
contribute to predictive uncertainty of the CHASM
model, it does not strongly affect the choice of other
parameter values. In this study, we do not find signif-
icant correlations between initial soil moisture and other
parameters such as vegetation cover fraction, minimum
stomatal resistance, ground albedo, and soil temperature
as reported by Niyogi et al. (2002). The reason for the
inability to find these relationships is not clear and it
needs to be further investigated using different land sur-
face models and different sensitivity analysis methods
in the future.

Another potentially important difference between dif-
ferent formulations of land surface models is the adop-
tion of the so-called mosaic approach to physical pa-
rameterization. Both nonmosaic and mosaic approaches
(Koster and Suarez 1992) were considered in the PILPS
offline set of experiments (Chen et al. 1997; Wood et
al. 1998; Schlosser et al. 2000; Slater et al. 2001; Bowl-
ing et al. 2003). The nonmosaic approach defines a set
of effective surface parameters (e.g., roughness length,
albedo, surface resistance to evaporation) that provide
a close approximation to the grid box mean fluxes from
patchy landscapes. Effective parameters are calculated
offline as the area-weighted mean values of the surface

types in a grid box for the CHASM. For some param-
eters (e.g., roughness lengths), more sophisticated meth-
ods are used because of the nonlinear relationship be-
tween the fluxes and the parameters. An energy balance
equation is solved to calculate fluxes as grid box means.
In contrast, the mosaic approach solves separate surface
energy balances for each surface type (or tile) and area-
weighted means of the fluxes from tiles are used to
represent grid box mean values. So the mosaic approach
aggregates fluxes, whereas the nonmosaic approach ag-
gregates parameters.

The net effect of uncertainties in initial soil moisture
and the mosaic versus nonmosaic approaches on rmse
and biases for sensible and latent heat fluxes at six mea-
surement sites are shown in Fig. 10. The case with the
nonmosaic approach includes the optimization for initial
soil moisture. The results show that rmse of sensible
and latent heat fluxes are similar for the three experi-
ments. However, there are significant differences among
the three experiments for biases of sensible and latent
heat fluxes at some sites. The latent heat fluxes at ARM-
CART and Cabauw are two good examples: the nega-
tive/positive biases (at ARMCART/Cabauw) are re-
duced for the varied soil moisture case and are increased
again for the nonmosaic approach case. However, the
biases of sensible fluxes are reduced for the nonmosaic
approach case from varied soil moisture cases at the two
sites. Overall, use of varied soil moisture leads to equal
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FIG. 9. Same as in Fig. 5 but for Amazon tropical forests and Loobos midlatitude pine forest. (dot 5 95% confidence level, diamond 5
the best parameter set, black 5 the year 1997, and gray 5 1998; results from Amazon and Loobos are shown from the first and the second
row, respectively).

TABLE 8. Correlation coefficients between vegetation albedo (ALBV) and other selected parameters for seven sites.

Sites Abracof Abracop Amazon ARMCART Cabauw Loobos Tucson

ALBG
VEGM
RCMN

20.36
0.46
0.53

20.27
0.33
0.36

20.27
0.20
0.28

20.20
0.23
0.59

20.40
0.15
0.39

20.18
0.01
0.25

20.41
0.30

20.19

or better simulations when compared with results where
soil moisture is fixed.

Figure 11 considers the impacts of these uncertainties
on the marginal PPDs derived for minimum stomatal
resistance (RCMN). RCMN is an important parameter
for all sites insofar as it impacts the partitioning of sen-
sible and latent heat fluxes at the land surface. In Fig.
11 the solid lines represent the case of fixed initial soil
moisture, solid-dotted lines represent the case of varied
initial soil moisture, and gray lines represent the case
of the nonmosaic model. The results show that use of
varied initial soil moisture does not change shapes of
the marginal PPDs for any of the examined sites except
for Tucson. Instead, the principal change is in the width
of the distributions. This means that including initial

soil moisture within the parameter optimization increas-
es the uncertainty ranges derived for minimum stomatal
resistance. Because there was not much change between
the distributions between the varied initial soil moisture
and the nonmosaic approach (except again for Tucson),
we can infer that this structural change in the land sur-
face formulation is not critical. At most of the sites
considered here besides Tucson, vegetation covers over
90% of land surface. Therefore, one may expect similar
marginal PPDs of minimum stomatal resistance between
the mosaic and nonmosaic approaches. At Tucson, the
nonmosaic approach significantly changes the shape of
the PPD and uncertainty ranges of minimum stomatal
resistance when compared with mosaic results (Fig.
11f). The point of the largest likelihood is shifted from
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FIG. 10. Rmse for (a) SH and (c) LH fluxes, and biases for (b) SH and (d) LH fluxes calculated by optimal parameter
sets calibrated with fixed and varied initial soil moisture, and nonmosaic approach for the six examined sites.

100 to 20 s m21. The importance of the mosaic versus
nonmosaic approaches on the PPD is physically rea-
sonable at this location because vegetation covers about
60% of land surface with bare ground covering about
40% of land surface. Therefore, one may more generally
expect that the average of parameters (nonmosaic) and
average of energy fluxes (mosaic) between separately
defined patches should result in different distributions
of marginal PPD’s distributions of minimum stomatal
resistance.

7. Discussion

The uncertainty ranges of sensible and latent heat
fluxes in our study are comparable to PILPS model scat-
ter (ranges of all 23 land surface models; Chen et al.
1997; Desborough 1999) for monthly and annual mean
results at the Cabauw site. Uncertainty sources for both
PILPS scatter and uncertainty ranges of our study may
come from the combination of uncertainty in values
assigned to important parameters, model structure dif-
ferences, uncertainty within observed data, and so on,
because these uncertainty sources cannot be easily sep-
arated.

This offline study is similar to Frank and Beven
(1997) but is more comprehensive in that it considers
more biomes and potential sources of uncertainty. On

average we tested ;100 000 model parameter sets cho-
sen stochastically by a VFSA algorithm that permits one
to concentrate on regions of the estimated PPD that are
the most important for each site and each experiment.
In contrast, Franks and Beven (1997) drew 10 000 pa-
rameter sets randomly (Monte Carlo sampling) for 15
parameters of a land surface model. The purely random
Monte Carlo sampling strategy has been found to be 2–
3 orders of magnitude less efficient in comparison with
the type of importance sampling that can be obtained
with VFSA (see Sen and Soffa 1995, 1996; Jackson et
al. 2003, 2004).

Second, our analysis considers long-term observa-
tional data covering 6 months–2 yr at seven sites, which
are representative of tropical forests, tropical pastures,
midlatitude grasslands, midlatitude crops, semiarid
grasslands, and midlatitude pine forests, while Franks
and Beven (1997) consider shorter-term observational
data with 2 weeks at tropical forest and midlatitude
grassland sites that are different from our sites. Short-
term field campaigns represented by these datasets may
not be adequate to specify parameter values character-
istic of a site or area as reported by Franks and Beven
(1997). Therefore, longer periods of data as we used
here, incorporating obvious seasonal variation of cali-
bration data, may be more appropriate to constrain the
feasible parameter sets or model structures.
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FIG. 11. Calculated marginal PPDs of minimum stomatal resistance for fixed and varied initial soil moisture and
nonmosaic approach at (a) Abracop, (b) Amazon, (c) ARMCART, (d) Cabauw, (e) Loobos, and (f ) Tucson sites (solid
line 5 fixed initial soil moisture, dashed–dotted line 5 varied initial soil moisture, and gray line 5 nonmosaic approach).

The estimation of the potential sources of parameter
uncertainties and their impacts on surface energy fluxes
that we document for the CHASM are conditional on
several subjective elements. The results apply exclu-
sively to the CHASM and reflect the period and quality
of the observational datasets as well as the biases in-
herent in using VFSA to select parameter values. In
addition, like other approaches to quantifying uncer-
tainty using Bayesian statistics (i.e., GLUE), BSI con-
tains a number of subjective choices that may, to a lim-
ited extent, affect the analysis. These more subjective
elements include the choice of parameter ranges to con-
sider and the choice of cost (error) function definition.
Therefore, the parameter values and ranges reported in
this paper should be used in this context.

8. Conclusions

We investigate the ability of BSI and MC to identify
the optimal parameter sets for the CHASM at seven
sites. Our results indicate that estimated optimal values
are very similar for the important parameters although
parameters values may be significantly different for in-
sensitive parameters. Calibrations improve the simula-
tions of sensible and latent heat fluxes for the CHASM
regardless of the calibration method at five of the seven

sites. Cross-validation of two tropical forest sites sug-
gests that the calibrated parameters can be transferred
to alternate sites within the same biomes. This spatial
transferability justifies, in part, the use of field-cali-
brated parameters within GCM simulations (e.g., Sen et
al. 2001).

Bayesian stochastic inversion is used to calculate
marginal PPDs for CHASM parameters and correlation
matrices between model parameters. Marginal PPDs are
used to estimate and analyze the source of uncertainties
arising from arbitrary choices of parameters of the
CHASM, and correlation matrices are used to investi-
gate the relationships between the CHASM parameters.
The results demonstrate that the CHASM shows sig-
nificant uncertainty for important model parameters,
such as minimum stomatal resistance (6–120 s m21),
vegetation roughness length (0.0–0.01 for grasslands),
and ground roughness length (0.0–0.08 m). Analysis of
correlation matrices shows a negative correlation be-
tween vegetation albedo and ground albedo, a positive
correlation between the vegetation albedo and minimum
stomatal resistance, and a positive correlation between
vegetation albedo and vegetation cover fraction for al-
most all sites. Examinations of multiyear datasets in-
dicate that the use of 1-yr datasets may be appropriate
for estimating the distributions of marginal PPDs of
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CHASM parameters. We used the parameter sets se-
lected by the BSI to estimate uncertainty ranges of sea-
sonally averaged, monthly mean, and annual mean sen-
sible and latent heat fluxes at seven sites at the 95%
confidence level and discuss the effect of initial soil
moisture and the nonmosaic approach on optimization
processes and uncertainty estimates of the CHASM.
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APPENDIX

Basic Parameterization Related to the Latent
Heat Flux

a. Basic parameterization

CHASM uses a grouped mosaic approach (Koster and
Suarez 1992) to resolve the surface energy balance to
a soil depth of 10 cm. Similar elements from a grid cell
are put together to form tiles (e.g., vegetation, bare soil),
and a separate surface energy balance equation is de-
veloped and resolved for each tile. Each tile has a prog-
nostic bulk temperature for storage of energy and a di-
agnostic skin temperature for calculation of surface en-
ergy fluxes. Each tile can have up to four evaporation
sources related to latent heat fluxes. Transpiration (Etr),
canopy evaporation (Ec), bare-ground evaporation (Eg),
and snow sublimation (En) are expressed as

[t ] [t ] [t ] [t ]A (1 2 a )a r b (q* 2 q )wet y a tr a[t ]E 5 , (A1)tr [t ](r 1 r* )a c

[t ] [t ] [t ] [t ]A a a r (q* 2 q )wet y a a[t ]E 5 , (A2)c ra

[t ] [t ] [t ] [t ]A a r b (q* 2 q )g a g a[t ]E 5 , and (A3)g ra

[t ] [t ] [t ]A a r (q* 2 q )n a a[t ]E 5 , (A4)n ra

where A[t] is a tile fraction. Each tile fraction is further
divided into vegetation ( ), ground ( ), and snow[t] [t]a ay g

( ) fractions. If canopy interception occurs, vegetation[t]an

fraction is further divided into wet ( ) and dry (1 2[t]awet

) fractions each time step and is set equal to the[t] [t]a awet wet

canopy interception store’s fractional wetness. The val-
ues and are reduced below their potential rates[t] [t]E Etr g

by moisture availability indices (btr and ), and[t] [t]b Eg tr

must overcome an additional resistance ( ) that rep-[t]r*c
resents the influence of nonmoisture stomatal stresses.
Here, ra is an aerodynamic resistance for heat and mois-
ture. The surface saturated specific humidity (q*[t]) is
obtained as a function of diagnostic skin temperature.
The values ra and qa are air density and air specific
humidity of forcing data, respectively.

b. Canopy resistance

Following the basic philosophy of Jarvis (1976),
is expressed as the product of a minimum value[t]r*c

(rcmin) and a series of environmental factors for radiation
( f R), temperature ( f T), and humidity ( f H):

[t ]r* 5 r /( f f f ), (A5)c cmin R T H

f 5 F /200, (A6)R s

2f 5 1 2 (298 2 T ) , and (A7)T 3

f 5 500/V , (A8)H D

where each of the functions is constrained to lie between
0 and 1 and is constrained to lie between rcmin and[t]r*c
a maximum value of 1000 s m21. Here Fs is incident
solar radiation, T3 is soil temperature at 1 m, and VD is
the near-surface air vapor pressure deficit. The rcmin is
a sensitive and important parameter in optimization and
uncertainty analysis processes of our study.

c. Aerodynamic resistance to turbulent transport

The aerodynamic resistance (ra) for heat and moisture
is parameterized as

2r 5 1/(a F u ), with (A9)a h a

2 2a 5 [k /log(z 1 z )/z ] , (A10)vk a 0 0

where za is the atmospheric forcing height, z0 is the
surface roughness length and kvk is von Kármán’s con-
stant. The value Fh is used to parameterize the depen-
dence of ra on atmospheric stability, with the resistance
to turbulent exchange decreasing as thermal forcing in-
creases.

F 5 1/[1 1 10R (1 1 8R )] when T , T , (A11)h iB iB s a

1/2F 5 1 2 15R /(1 1 c|R | ) when T . T , (A12)h iB iB s a

and (A13)

F 5 1 when T 5 T ,h s a

where Ts and Ta are surface temperature and air tem-
perature, respectively. The bulk Richardson number
(RiB) and adjustable parameter (c) are expressed as
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2R 5 gz (T 2 T )/(T u ) and (A14)iB a a s s a

2 1/2c 5 75a [(z 1 z )/z ] , (A15)a 0 0

where g is acceleration due to gravity. Roughness length
(z0) is calculated as log-weighted average across veg-
etation, bare ground, and snow fractions. Roughness
lengths for vegetation, bare soil, and snow are optimized
using BSI and MC approaches. Vegetation roughness
length is an important parameter for optimization and
uncertainty analysis processes of our study.
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